Simulation of unsteady incompressible flows using temporal adaptation and dynamic remeshing
نویسندگان
چکیده
An implicit finite-element flow solver based on the Galerkin finite-element method is employed to study unsteady laminar flow past single and multiple objects. A fast dynamic remeshing technique is used to control the distribution of the mesh nodes during the unsteady simulation, thus minimizing (or even eliminating) the need for adding artificial dissipation terms. The quad-dominant mesh generator coupled with this solver is based on a Cartesian mesh with a conforming spatial decomposition. The dynamic remeshing technique preserves the quality of the elements during the refinement/coarsening process. A mixed Galerkin finite-element discretization is used to generate the nonlinear system corresponding to the Navier-Stokes equations. After approximating the time derivative by means of finite differences and applying Picard’s iteration, one obtains linear systems of equations that need to be solved at each time step. The GMRES method combined with a least-squares commutator as a preconditioner is employed for the solution of these linear systems. The time step is controlled and adapted using an error estimation of the computed flow variables with respect to time. Results of several numerical simulations are presented and validated against experimental and numerical studies to demonstrate the viability of this new approach.
منابع مشابه
A case study of flood dynamic wave simulation in natural waterways using numerical solution of unsteady flows
Flood routing has many applications in engineering projects and helps designers in understanding the flood flow characteristics in river flows. Floods are taken unsteady flows that vary by time and location. Equations governing unsteady flows in waterways are continuity and momentum equations which in case of one-dimensional flow the Saint-Venant hypothesis is considered. Dynamic wave model as ...
متن کاملExtension Ability of Reduced Order Model of Unsteady Incompressible Flows Using a Combination of POD and Fourier Modes
In this article, an improved reduced order modelling approach, based on the proper orthogonal decomposition (POD) method, is presented. After projecting the governing equations of flow dynamics along the POD modes, a dynamical system was obtained. Normally, the classical reduced order models do not predict accurate time variations of flow variables due to some reasons. The response of the dynam...
متن کاملThree-dimensional characteristic approach for incompressible thermo-flows and influence of artificial compressibility parameter
In this paper the characteristics of unsteady three-dimensional incompressible flows with heat transfer are obtained along with artificial compressibility of Chorin. At first, compatibility equations and pseudo characteristics for three-dimensional flows are derived from five governing equations (continuity equation, Momentum equations in three directions, and energy equation) and then results ...
متن کاملCOMPUTATION OF UNSTEADY INCOMPRESSIBLE FLOWS WITH THE STABILIZED FINITE ELEMENT METHODS: SPACE-TIME FORMULATIONS, ITERATIVE STRATEGIES AND MASSIVELY PARALLEL IMPLEMENTATIONSt
We discuss the stabilized finite element computation of unsteady incompressible flows, with emphasis on the space-time formulations, iterative solution techniques and implementations on the massively parallel architectures such as the Connection Machines. The stabilization technique employed in this paper is the Galerkinjleast-squares (GLS) method. The Deformable-Spatial-DomainjStabilized-Space...
متن کاملA bridge between projection methods and SIMPLE type methods for incompressible Navier-Stokes equations
A bridge is built between projection methods and SIMPLE type methods (Semi-Implicit Method for Pressure-Linked Equation). A general second-order accurate projection method is developed for the simulation of incompressible unsteady flows by employing a non-linear update of pressure term as n∇ pn+1 + (I − n)∇ pn , where n is a coefficient matrix, which may depend on the grid size, time step and e...
متن کامل